Tuesday, March 18, 2014

Contoh Soal Matematika Pertidaksamaan

Posted by Blogger Name. Category: , ,

KUMPULAN SOAL MATEMATIKA DASAR


1.       Pertidaksamaan ½2x – 3 ½< 5 dipenuhi oleh x dengan ….
(A)   1 < x < 4                         (C) –1 < x < 5                       (E) –4 < x < 6
(B)   –1 < x < 5                       (D) –4 < x < 1
(UMPTN ’90 Rayon A)
2.       3 ³ 81dipenuhi oleh ….
(1)     x < -2,5          (2) x < -25    (3) x > 1,25    (4) x > 12,5         
(UMPTN ‘90 Rayon A)

3.       Jika alogb < alog c maka berlaku ….
(1)     b > c > 0 jika a > 1       (3) 0 < b < c jika a < 1
(2)     0 < b < c jika a > 0       (4) b > c > 0 jika 0 < a < 1
(UMPTN ‘90 Rayon A)

4.       Jika |3x - 5| > 1, maka nilai x yang memenuhi adalah
(A)   1/3 < x < 1                      (D)  -~ < x < 1/3 atau 1 < x < ~
(B)   2/3 < x < 4/3                  (E)  -~ < x < 4/3 atau 2 < x < ~
(C)   4/3 < x < 2
(UMPTN ‘90 Rayon B)

5.       Jika log a > 1 dan log b > 1, sedangkan a ¹ b, maka hubungan antara a dan b yang berlaku adalah
(1) > 1            (2) > 1          (3) a b > 0       (4) a b > 100    
(UMPTN ‘90 Rayon B)

6.       Jika  ½x + 6½< 3, maka nilai x yang memenuhi adalah
(A)   –9 < x < 3                       (C) -5 < x < 1                       (E) -6 < x < 6
(B)   –6 £ x £ 3                       (D) -£ x £ 6
(UMPTN ‘90 Rayon C)
7.       Jika | 3logx | < 2 maka ….
(A)   1/2 < x < 2                      (C) 1/3 < x < 3                     (E) 1/3 < x < 9
(B)   1/9 < x < 3                      (D) 1/9 < x < 9
(UMPTN ‘90 Rayon C)
8.       Pertaksamaan a3 + 3ab2 > 3a2b + b3 yang mempunyai sifat….
(A)   a dan b positif                           (D) a >b
(B)   a dan b berlawanan tanda         (E) a2 > b2
(C)   a positif dan b negatif
(UMPTN ‘91 Rayon A, B, dan C)
9.       Nilai-nilai a yang memenuhi a3 < a2 adalah
(A)   a < 1                                (C) 0 < a < 1                         (E) tidak ada
(B)   a > 1                                (D) a < 0 atau 0<a <1
(UMPTN ‘91 Rayon A)

10.    Himpunan penyelesaian dari  < 1 adalah
(A)   {x ½ –1/2 < x < 1/2 }    (C) {x ½ – 1 < x <1/2}        (E) {x ½  x > – 1/2}
(B)   {x ½ – 3 < x < 1}           (D) {x ½ x < 1/2}
(UMPTN ‘91 Rayon A)

11.    Himpunan penyelesaian  < 2 adalah
(A)   { x | x < 5/3}                  (D) {x | x < 5/3} È { x | x > 11}
(B)   { x | x > 11}                   (E) {x | x > 5/3} Ç { x | x < 11}
(C)   { x | 5/3 < x < 11}
(UMPTN ‘91 Rayon B)

12.    Jika P3 < Q3 maka ….
(1) P8 < Q8      (2) P6 < Q6       (3) P2 < Q2      (4) P < Q
(UMPTN ‘91 Rayon B)

13.    Himpunan penyelesaian a2 + 1 ³ 2a adalah
(A)   {a | a > 1}                       (C) {a| a > 1}                       (E) {a | a real}
(B)   {a | a < -1}                    (D) {a | a positif }
(UMPTN ‘91 Rayon C)

14.    Nilai x yang memennuhi pertidaksamaan |x - 2| < 5 dan | 2x - 3| > 7 adalah
(A)   -3 < x < 5 atau x > 7                (D) x < -2 atau 5 < x < 7
(B)   x < -3 atau -2 < x < 7              (E) -3 < x < -2 atau x > 5
(C)   -3 < x < -2
(UMPTN ‘91 Rayon C)

15.    Nilai x yang memenuhi  < 0 terletak pada selang ….
(A)   1 < x <  3                        (D) 1 < x < 2  atau  2 < x < 3
(B)   1 < x <  2                        (E) 1 < x < 2  dan   2 < x < 3
(C)   2 < x <  3
(UMPTN ‘92 Rayon A)

16.    Fungsi f(x) =  terdefinisi dalam daerah ….
(A)   x £ 0 atau 1 < x £ 5      (C)    x £ 0 atau 1 £ x £ 5            (E) 0 < x < 1 atau x > 5
(B)   x < 0 atau 1 < x < 5      (D)    0 £ x < 1 atau x ³ 5
(UMPTN ‘92 Rayon A)

17.    Nilai x yang memenuhi pertidaksamaan  | log(x – 1)| < 2 adalah
(A)   x  >  101                                   (D) 99 < x < 101
(B)   x > 101 atau x < 1 + 10–2         (E) x < 99 atau x > 101
(C)   1,01 < x < 101
(UMPTN ‘92 Rayon A, B, dan C)

18.    Pertidaksamaan 2log x2 > 2log(2x - 1) dipenuhi oleh ….
(A)   semua nilai real                                (D) semua nilai yang lebih dari 1
(B)   semua nilai yang lebih dari ½        (E) semua nilai yang lebih dari ½ dan ¹ 1
(C)   semua nilai diantar  ½ dan 1
(UMPTN ‘92 Rayon B)

19.    Grafik fungsi y =  berada ….
(1)    di atas-x untuk 0 < x < 3                    (3) di atas-x untuk -4 < x < -1
(2)    di atas-x untuk -8 < x < -7               (4) di atas-x untuk -6 < x < -5
(UMPTN ‘92 Rayon B)

20.     bernilai negatif untuk ….
(1) –1 < x < 1      (2) 1 < x < 2     (3) 4 < x < 5      (4) 3 < x < 5
(UMPTN ‘92 Rayon B)

21.    Jika ditentukan himpunan P = { x | x2 - x - 6 £ 0 } dan H = {x | x2 - x - 2 > 0}, maka himpunan P - H adalah
(A)    {x | -2 £ x < -1 }          (C) {x | 2 < x £ 3 }               (E) {x | -2 £ x < 2}
(B)    {x | -1 £ x £ 2 }            (D) {x | -1 < x £ 3}
(UMPTN ‘92 Rayon C)

22.    Himpunan penyelesaian dari log(x2 + 4x + 4) £ log(5x + 10) adalah
(A)    { x | -2 < x £ 3}            (D) { x | x£ -2 atau x ³ 3}
(B)    { x | x < 3 }                    (E) { x | -2 £ x £ 3}
(C)    { x | -3 < x < -2 }
(UMPTN ‘92 Rayon C)

23.    Jika ô2x - 3ô< 1 dan 2x < 3, maka ….
(A)     x < 3/2                           (C) 3/2 < x < 2                     (E) 3/2 < x < 5/2
(B)     1 < x < 2                        (D) 1 < x < 3/2
(UMPTN ‘93 Rayon A)

24.    Fungsi f dengan rumus f(x) =  terdefinisikan pada himpunan ….
(A)    {xôx ³ -1}           (C) {xôx ³ 1}                                (E) {xô-1 < x £ 0 atau x ³ 1}      
(B)    {xôx ³ 0}             (D) {xô-1 £ x £ 0 atau x ³ 1
(UMPTN ‘93 Rayon A)

25.    Jika a, b, c, dan d bilangan real dengan a > b dan c > d, maka berlakulah ….
(1)  ac > bd                            (3)  ad > bc
(2)  a + c > b + d                    (4)  ac + bd > ad + bc
(UMPTN ‘93 Rayon A, B, dan C)
26.    Nilai x yang memenuhi pertidaksamaan  <  adalah
(A)    a ³ 1                           (C) a ³ -2                         (E) a £ -2
(B)    a ³ 2                           (D) a ³ 2
(UMPTN ‘93 Rayon B)

27.    Nilai-nilai x yang memenuhi |x - 2|2 < 4 |x -2| + 12 adalah
(A)     x > 8 atau x < -4         (C) -8 < x < 4                       (E) x > 4
(B)     -4 < x < 8                      (D) x < -8 atau x > 0
(UMPTN ‘93 Rayon B)

28.    Fungsi f(x) =  terdefinisi untuk x yang memenuhi ….
(A)    -1 < x < 4                       (C) -1 < x < 1                       (E) -4 < x < 4
(B)    x < - 1 atau x > 1         (D) x < -4 atau x > 4
(UMPTN ‘93 Rayon C)

29.    Nilai x yang memenuhi |-x2 + 2x - 2| < 2 adalah
(A)    x < 2                                (C) -2 < x < 0                       (E) -2 < x < 2
(B)    x > 2                                (D) 0 < x < 2
(UMPTN ‘93 Rayon C)


30.    Apabila a < x < b dan a < y < b, maka berlaku ….
(A)    a < x - y < b                  (D)  (b - a) < x - y <  (a - b)
(B)    b - a < x - y < a - b    (E)  (a - b) < x - y <  (b - a)
(C)    a - b < x - y < b - a
(UMPTN ‘94 Rayon A, B, dan C)

31.    Nilai-nilai yang memenuhi pertidaksamaan |x -3|2 > 4 |x - 3| + 12 adalah
(A)    -2 < x < 9                              (C) x > 9 atau x < - 1          (E) x > 9 atau x < -3
(B)    -3 < x < 9                              (D) x > 9 atau x < -
(UMPTN ‘94 Rayon A)

32.    Pertidaksamaan  £ 1 dipenuhi oleh ….
(A)    x ³ – 4 atau x < 1                (C) 0 £ x £ 1         (E) –8 £ x £  1
(B)     – 4 <x £ 1                             (D) –8 £ x < 1
(UMPTN ‘94 Rayon A)

33.    Nilai- nilai x yang memenuhi |x - 4|2 > 4 |x - 4| + 12 adalah
(A)    x > 10 atau x < -1               (C) -1 < x < 10                     (E) x > 10 atau x < 0
(B)    x > 10 atau x < -2               (D) -2 < x < 10
(UMPTN ‘94 Rayon B)

34.    Semua nilai x yang memenuhi pertidaksamaan  < 1 adalah
(A)    –1 < x < 0                              (C) 1 < x < 3                          (E) –3 < x < 0
(B)    0 < x < 1                                (D) –3 < x < –1
(UMPTN ‘94 Rayon B)

35.    Nilai-nilai yang memenuhi pertidaksamaan | x – 2 |2 > 4 | x – 2 | + 12 adalah
(A)    –4 < x < 8                              (C) x > 2 atau x < –2           (E) x > 8 atau x < -2
(B)    x > 8 atau x < –4                 (D) -2 < x < 2
(UMPTN ‘94 Rayon C)

36.    Himpunan penyelesaian pertidaksamaan  < 1 adalah
(A)     {x | x > 2}                             (C) {x | x < 2}      (E) {x | -4 < x < 2}
(B)     {x | x < -4}                           (D) {x | x > -4}
(UMPTN ‘94 Rayon C)


37.    Semua nilai x yang memenuhi pertidaksamaan < 3 adalah
(A) x >       (B) x <       (C) x <       (D) x >       (E) x £
(UMPTN ‘95 Rayon A)

38.    Himpunan  penyelesaian  dari  pertidaksamaan | 3x + 2 | > 5 adalah
(A)    {x | x < – atau x > 0}       (D) {x | x < – atau x > 1}
(B)    {x | x < – atau x > 1}       (E) {x | x < – atau x > 0}
(C)    {x | x < –1atau x > 1}
(UMPTN ‘95 Rayon A)

39.    Jika  > , maka ….
(A)    x < –5 atau –5 < x < 7        (C) x < –5 atau 7 < x < 37     (E) x > 37 atau –5 < x < 7
(B)    7 < x < 37                              (D) –5 < x < 7      
(UMPTN ‘95 Rayon A)

40.    Pertidaksamaan  > 1 mempunyai penyelesaian ….
(A)     x > 2                                      (C) x > -1 dan x ¹           (E) x > -1
(B)     x > 2 dan x ¹                   (D) -1  < x < 2 dan x ¹
(UMPTN ‘95 Rayon B)

41.    Pertidaksamaan logaritma 6log (x2 - x) < 1 dipenuhi untuk nilai-nilai x ….
(A)    -2 < x < 0 atau 1 < x < 3            (C) x < -2                      (E) x < -2 dan x > 3
(B)    -2 < x < 3                                      (D) x > 3
(UMPTN ‘95 Rayon B)

42.    Nilai-nilai dalam interval berikut yang memenuhi pertidaksamaan  ³ 0 adalah
(A)    -2 £ x < -1      (B) -2 £ x < 3       (C) 0 £ x < 4      (D) x £ 2      (E) x ³ 2
(UMPTN ‘95 Rayon B)

43.    Semua nilai x yang memenuhi 0 < | x - 3 | £ 3 adalah
(A)    0 < x < 3 atau 3 < x £ 6                      (D) 0 £ x £ 3 atau 3 < x < 6
(B)    0 £ x < 3 atau 3 < x £ 6                      (E) 0 < x < 3 atau 3 < x < 6
(C)    0 £ x £ 3 atau 3 < x £ 6
(UMPTN ‘95 Rayon C)
44.    Jika 2log(1 - 2logx) < 2, maka nilai x yang berlaku adalah
        (A) 4                (B) 2                      (C)                      (D)                      (E)
        (UMPTN ‘95 Rayon C)
45.    Himpunan penyelesaian pertidaksamaan  < 0 adalah
(A)    (1,5)                                        (C) (–¥,1)                              (E) (–¥,1) È (5,¥)    
(B)    (5,¥)                                       (D) (–¥,1) È (3,5)
(UMPTN ‘95 Rayon C)

46.     < 0 Berlaku untuk ….
(A)     < x < 1                                                  (D)      x < –3 atau x >
(B)    –3 < x < 0                                                  (E) x > 3 atau x < –
(C)     –3 < x < – atau  < x < 1
(UMPTN ‘96 Rayon A)

47.    Pertidaksamaan   2x – a >    +  a   mempunyai  penyelesaian  x > 5. Nilai a = ….
(A) 2               (B) 3            (C) 4                   (D) 5                      (E) 6
(UMPTN ‘96 Rayon A)

48.    Jika P = { x | x2 – 3x £ 0 } dan Q = { x | x2 – 5x ³ 0 }, maka PÇQ = ….
(A)    0              (B)  {0}       (C)  {0,5}       (D) {3,5}                  (E) himpunan kosong
(UMPTN ‘96 Rayon B)
49.    Nilai x yang memenuhi pertidaksamaan    <  0 adalah
(A)     – 1 < x < atau x > 4                        (D) x < –1 dan  < x < 4
(B)     x < –1 atau  < x < 4                        (E) x > –1 dan x < 4
(C)    –1 < x <  dan x > 4
(UMPTN ‘96 Rayon B)
50.      <    berlaku untuk … .
(A) x >        (B) x > 2        (C) x > 3        (D)  < x <  3           (E) 2 < x < 3
(UMPTN ‘96 Rayon C)
51.    Nilai x yang memenuhi  ³  adalah
(A)    x ³ 4 - 2, x2
(B)    x £  4 + 2                                                        (D) x ³ 4 - 2, x0
(C)    4 - 2 £  x £ 4 + 2, x0, x2            (E) x ³ 4 - 2
(UMPTN ‘96 Rayon C)

52.      ³  0  berlaku untuk ….
(A) x £ –3 atau –1 £ x £ 2             (D) x £ –3 atau –1 £ x £ 2 atau x ³ 3
(B) –3 £ x £ –1 atau x > 3               (E) x £ –3 atau –1 < x £ 2 atau x > 3
(C) –3 £ x < –1 atau 2 £ x £ 3
(UMPTN ‘97 Rayon A)

53.    Pertidaksamaan  < 1 dipenuhi oleh ….
(A) x < 8     (B) x < 3      (C) x < –3    (D) x < 1   (E) x < –1
(UMPTN ‘97 Rayon A)

54.    Nilai x yang memenuhi   >  adalah
(A) x < – 5 dan 7 < x < 37           (D)  x < – 5 atau 7 < x < 37
(B)     x > – 5 dan 7 > x > 37                       (E)  – 5 < x < 37
(C) x > – 5 atau 7 > x > 37
(UMPTN ‘97 Rayon B)
55.     Nilai x yang memenuhi  < 0 adalah
(A)     < x <   atau x > 1                    (D) x < – 3 atau x > 1
(B)    – 3 < x < –  atau  < x < 1           (E) – 5 < x < 7
(C)     < x < atau x < – 3
(UMPTN ‘97 Rayon C)
56.    Nilai x yang memenuhi | 3 + | > 1 adalah
(A)    x >  atau x <         (C)  x                     (E)  x > – atau x <  –
(B)    x >                                      (D)  x > – atau x <  –                 
(UMPTN ‘97 Rayon C)
57.    Nilai x yang memenuhi  > 0 adalah
(A) x < –12 atau x > –3               (D) 3 < x < 12
(B)       –3 > x > –12                     (E) x < –12
(C) x < 3 atau x > 12
(UMPTN ‘98 Rayon A)

58.    Pertidaksamaan  £ 0 berlaku untuk ….
(A)   £  x < 3                            (D)  x < – atau x ³ 3
(B)     – < x  £ 3                         (E)  x £ atau x > 3
(C)   –4 < x < –
(UMPTN ‘98 Rayon A)

59.    Jika  > , maka ….
(A)    | x – 2 | > 3            (C) 2 < x < 5            (E) 3 < x < 5
(B)    –1 < x < 5              (D) –2 < x < 5
(UMPTN ‘98 Rayon B)
60.    Himpunan penyelesaian pertidaksamaan  ³ 0 adalah
(A)    { x | 0 < x £ 1}          
(B)    { x | 0 £ x £ 1 atau x ³ 3}
(C)    { x | x £ 0 atau 1 £ x £ 3}
(D)    { x |  x < 0 atau x ³ 1}
(E)    { x | x < 0 atau  1 £ x < 3 atau x > 3}
(UMPTN ‘98 Rayon B)

61.    Himpunan penyelesain pertidaksamaan (x – 2)(3–x) ³ 4 (x – 2) adalah
(A)   { x | 2 £ x £ 3}                                       (D) { x | –1 £ x £ 2}
(B)  { x | x £ 2 atau x ³ 3}                           (E) { x | x £ 1 atau x ³ 2}
(C)  { x | –2 £ x £ 1}
(UMPTN ‘98 Rayon B)

62.    Nilai terbesar x, agar x -  ³  +  adalah
(A) 1               (B) –1                     (C) –2                     (D) –3                     (E) –4

(UMPTN98 Rayon B)

0 comments:

Post a Comment

◄ Posting Baru Posting Lama ►