Setiap bilangan yang dijumlahkan selalu merupakan hasil perkalian antara bilangan sebelumnya dengan suatu bilangan yang tetap, yang disebut rasio. Penjumlahan bilangan-bilangan inilah yang disebut deret geometri. Pada berbagai macam deret geometri, ada suatu deret geometri yang memiliki suku-suku yang tak hingga banyaknya, tetapi jumlahnya mendekati nilai tertentu. Deret yang seperti itu disebut deret geometri tak terhingga. Deret geometri tak terhingga tersebut memiliki rasio di antara 0 dan 1. Bagaimana cara menentukan nilai dari deret geometri tak terhingga tersebut?
Dalam menemukan limit dari deret geometri tak terhingga dapat dilakukan dengan menggunakan alat peraga. Alat peraga ini terdiri dari puzzle dan bingkainya. Perhatikan gambar berikut.
Puzzle dari alat peraga tersebut terdiri dari segitiga dan beberapa trapesium yang memiliki sepasang sisi siku-siku yang sama panjang. Sehingga trapesium-trapesium tersebut merupakan trapesium-trapesium yang sebangun. Untuk membuat alat peraga ini harus memenuhi syarat-syarat tersebut.
Penggunaan Alat Peraga
Bagaimana cara menggunakan alat peraga tersebut? Simak penjelasannya untuk menggunakan alat peraga tersebut.
- Letakkan kepingan-kepingan puzzle, yaitu satu segitiga kuning, tiga trapesium merah, dan tiga trapesium hijau ke dalam bingkai puzzle seperti gambar di atas.
- Setelah puzzle terbentuk, trapesium-trapesium tersebut akan membentuk segitiga siku-siku besar. Apakah segitiga besar ini sebangun dengan segitiga kuning?
- Segitiga kecil (warna kuning) sebangun dengan segitiga besar, sehingga perbandingan sisi-sisi yang bersesuaian dari kedua segitiga tersebut sama.
- Sehingga diperoleh rumus deret geometri dengan suku pertama 1 dan rasio r untuk 0 <r < 1 adalah,
- Untuk mendapatkan rumus deret geometri dengan suku pertama a dan rasio r untuk 0 < r < 1, kalikan kedua ruas pada persamaan 4 dengan a.
Apabila Anda ingin membuat alat peraga tersebut, kami sediakan gambar panduannya.
Alat peraga di atas berfungsi untuk membantu siswa untuk berpikir dengan menggunakan objek konkrit. Dengan demikian, diharapkan konsep deret geometri akan lebih mudah dipahami. Semoga bermanfaat,
0 comments:
Post a Comment